

Supporting Information © Wiley-VCH 2012

69451 Weinheim, Germany

Origin of Low CO₂ Selectivity on Platinum in the Direct Ethanol Fuel Cell**

Richard Kavanagh, Xiao-Ming Cao, Wen-Feng Lin,* Christopher Hardacre, and P. Hu*

anie_201104990_sm_miscellaneous_information.pdf

Supporting Information

1. Computational Details

All calculations reported here were carried out using the VASP package with the use of a plane wave basis set.^[1-3] Electron exchange and correlation terms are described with the use of the generalised gradient approximation (GGA) using the PBE functional.^[4] Electron-ion interactions are described using projector-augmented wave (PAW) potential.^[5] The convergence of the plane-wave expansion was obtained using a cut-off energy of 400 eV. The two dimensional Brillouin integrations were fulfilled using a (5 x 5 x 1) Monkhorst-Pack grid.^[6] The ground state was obtained using Methfessel-Paxton smearing of 0.05 eV.^[7] Kinetic data was obtained using a constrained minimization transition state search technique.^[8-10]

The monoatomic step was modelled as a $(3 \times 1 \times 1)$ $(2 \ 1 \ 1)$ unit cell. A slab of four layers was employed, with the upper two layers being relaxed and the lower two in fixed geometry. Separation of slabs in the normal direction was achieved using a vacuum region of 12 Å. The aqueous medium was modelled using Nose thermostat molecular dynamics simulations (T = 353 K, 0.5 fs/step, 6000 steps). For these calculations, the DFT-optimised surface species were fixed, while an initial ice-like water structure was allowed to relax. Following MD calculations, 6 configurations were randomly selected from the last 200 time-steps for each species and optimised by DFT, with the lowest-energy configuration being reported. In each case, the 6 calculated total energies were consistent to within 0.05 eV, demonstrating that the systems had reached an equilibrium state.

2. Kinetics

The formation of CO_2 and acetic acid initially share the same minimum energy pathway until the formation of $CH_3CO_{(ads)}$. This indicates that the elementary steps from ethanol to $CH_3CO_{(ads)}$ are not crucial to the selectivity between CO_2 and acetic acid. Starting from $CH_3CO_{(ads)}$, two parallel pathways yield CO_2 and acetic acid, respectively. Given that CO can be readily converted to CO_2 in the presence of water^[11], either the dehydrogenation of $CH_3CO_{(ads)}$ to yield $CH_2CO_{(ads)}$ or the C-C bonding cleavage, *i.e.* $CH_2CO_{(ads)} \rightarrow CH_{2(ads)} + CO_{(ads)}$ is likely to be the key step in CO_2 formation. Comparing these two elementary steps, the energy barrier associated with C-C bond cleavage (0.90 eV) is higher than that associated with the dehydrogenation of $CH_3CO_{(ads)}(0.72 \text{ eV})$. This suggests that the C-C bond cleavage is the key step of CO_2 formation. It is expected that the coupling of $CH_3CO_{(ads)}$ and $OH_{(ads)}$ be the key step for acetic formation as it is a unique surface reaction step. Hence, the competition between C-C bond cleavage and the coupling of $CH_3CO_{(ads)}$ and $OH_{(ads)}$ determines the selectivity between CO_2 and acetic acid.

3. Intermediate and Transition State Structures and Bond Lengths (Å)

CH ₃ CH ₂ OH (ads)		
	Pt – O	2.287
	C – O	1.461
C	O – H	0.976
O H		0.570
Pt		
TS 1: CH ₃	3CH ₂ OH _(ads) → CH ₃ CHOH _{(a}	ds)
	C ₁ – H	1.608
	Pt – H	1.617
CŽ	$Pt-C_1$	2.461
C1	$C_1 - C_2$	1.505
H C1 0	$C_1 - O$	1.358
Pt		
	CH ₃ CHOH (ads)	
	$Pt_1 - O$	2.292
•	$Pt_2 - C_1$	2.056
C2.	$\begin{array}{c c} C_1 & C_1 \\ \hline C_1 - C_2 \end{array}$	1.510
H 0 H C1	$C_1 - C_2$	1.483
Ptf	$O-H_1$	0.978
Pt2	$C_1 - H_2$	1.103
		1.105
TS 2: CI	H ₃ CHOH _(ads) → CH ₃ COH _(ads)	s)
	C ₁ – H	1.469
0	Pt – H	1.698
C2	$Pt-C_1$	1.973
Ct	$C_1 - C_2$	1.491
	$C_1 - O$	1.327
Pt		

CH ₃ COH _(ads)	
$Pt - C_1$	1.926
$C_1 - C_2$	1.494
$C_1 - O$	1.319

TS 3: CH₃COH _(ads) → CH₃CO _(ads)

criscom (ads) a crisco (ads)	
O – H	1.424
$Pt_1 - H$	1.682
$Pt_2 - C_1$	1.974
$C_1 - C_2$	1.510
$C_1 - O$	1.255

CH₃CO_(ads)

e (nus)	
$Pt-C_1$	2.001
$C_1 - C_2$	1.514
$C_1 - O$	1.211

TS 4: $CH_3CO_{(ads)} \rightarrow CH_2CO_{(ads)}$

Clique (aus)		
C ₁ – H	1.441	
$Pt_1 - H$	1.624	
$Pt_1 - C_1$	2.249	
$Pt_2 - C_2$	1.980	
$C_1 - C_2$	1.533	
$C_2 - O$	1.214	

CH ₂ CO _(ads)	
$Pt_1 - C_1$	2.070
$Pt_2 - C_2$	2.005
$C_1 - C_2$	1.499
$C_2 - O$	1.207

TS 5: $CH_2CO_{(ads)} \rightarrow CH_{2(ads)} + CO_{(ads)}$

$C_1 - C_2$	2.102
$Pt_1 - C_1$	1.928
$Pt_2 - C_2$	1.911
$C_2 - O$	1.176

CH_{2} (ada) $\pm CO$ (ada)

$Cn_{2 \text{ (ads)}} + CO_{\text{(ads)}}$	
$Pt_1 - C_1$	2.012
$Pt_2 - C_1$	2.078
$Pt_2 - C_2$	2.063
$Pt_3 - C_2$	2.000
$C_2 - O$	1.184

TS 6: $CH_3CO_{(ads)} + OH_{(ads)} \rightarrow CH_3COOH_{(ads)}$

$C_1 - O_1$	1.787
$Pt_1 - C_1$	2.132
$Pt_2 - O_1$	2.096
$C_1 - C_2$	1.514
$C_1 - O_2$	1.227
O ₁ – H	0.983

	CH ₃ COOH (ads)	
	$Pt_1 - O_1$	2.284
	$C_1 - C_2$	1.500
C2.	$C_1 - O_1$	1.231
C1 H	$C_1 - O_2$	1.354
01 02	O ₂ – H	0.978
Pt		
TS 7: CI	H ₃ COOH _(ads) → CH ₃ COO _{(ad}	ls)
	O ₂ – H	1.704
	$Pt_1 - O_1$	2.085
	$Pt_2 - H$	1.581
C 02	$C-O_1$	1.303
O1 H	$C-O_2$	1.256
	CH ₃ COO (ads)	
• •	$Pt_1 - O_1$	2.086
C2	$Pt_2 - O_2$	2.086
T	$C_1 - O_1$	1.279
C1		1.279
O1 O2	$C_1 - O_2$ $C_1 - C_2$	1.506

- (1) Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 47, 558.
- (2) Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 48, 13115.
- (3) Kresse, G.; Hafner, J. Phys. Rev. B. 1993, 49, 14251.
- (4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
- (5) Blochl, P. Phys. Rev. B. 1994, **50**, 17953.
- (6) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B. 1976, 13, 5188.
- (7) Methfessel, M.; Paxton, A. T. Phys. Rev. B. 1989, 40, 3616.
- (8) Alavia, A; Hu, P.; Deutsch, T.; Sylvestrelli, P. L.; Hutter, J. *Phys. Rev. Lett.* 1998, **80**, 3650.
- (9) Michaelides, A.; Hu, P. J. Am. Chem. Soc. 2000, 122, 9866.
- (10) Liu, Z.-P.; Hu, P. J. Am. Chem. Soc. 2003, 125, 1958.
- (11)Reference (16) in main body.